Обработка материала по изменчивости методами математической статистики
Породы медоносной пчелы / Как изучать породы пчел / Обработка материала по изменчивости методами математической статистики
Страница 2

Вычисление среднего арифметического и стандартного отклонения можно вести как для вариационных рядов счетных признаков (см. выше пример с зацепками), только надо принимать, что частоты — число пчел в классе — относятся как бы к середине класса, например пять пчел в первом классе падают на 4,01 минуты, 7 — на 6,01.

В биометрических сочинениях приведенная нами характеристика типа — среднее арифметическое — и характеристики разбросанности отклонений вокруг типа — стандартное отклонение и коэфициент вариации, сопровождаются так называемыми средними и вероятными ошибками. Значение этих ошибок в биометрии необычайно велико. Дело в том, что когда мы определяем среднее число зацепок у ста пчел одной семьи, нас не интересуют именно эти 100 пчел, а интересует среднее число зацепок на крыльях всех пчел этой семьи, из которой в качестве пробной группы взято 100 штук. Оказывается, что о действительной средней величине нашего признака можно сделать заключение на основе пробы, причем характеристики, носящие название средних и вероятных ошибок, дают нам возможность сделать это заключение с такой точностью и уверенностью, с какой мы это пожелаем. Здесь не место выводить применяемые формулы; укажем, что формула для средней ошибки среднего арифметического такова: m = o/Vn , а для вероятной — РЕ= 6,6745(o/VN) (m есть сокращенное условное обозначение средней ошибки, а РЕ — вероятной), где N — число случаев пробы.

Для нашего примера с зацепками

m = 1,661/V100 = 1,661/10 = 0,17

Теория вероятности отрасль математики, которая лежит в основе математической статистики, учит, что если к среднему арифметическому прибавить тройную среднюю ошибку: 22,0 + 3х0,17 = 22,51 и вычесть ее из него 22—3х0,17 = 21,49, то мы получаем такие пределы: 21,49 — 22,51. В этих пределах с уверенностью, которую практически можно считать достоверностью (998 шансов против 2 в пользу нашего утверждения), лежит среднее арифметическое всего материала, из которого мы взяли пробу и который нас собственно и интересует. Если пользоваться вероятной ошибкой, т. е. величиной, равной приблизительно семи десятым средней ошибки (множитель 0,6745), то для получения той же степени достоверности надо брать не утроенную среднюю ошибку, а вероятную ошибку, помноженную на 4,5. Наконец, ошибки имеют большое применение, когда нам надо сравнить две характеристики двух пробных групп и сделать заключение о том, отличаются ли средние тех исходных групп, из которых мы взяли пробу. Предположим, у нас промерены пробы пчел из Москвы и Харькова в отношений длины их хоботка. Первые дали среднюю длину в 6,115±0,003 мм, а вторые 6,549±0,003 мм. Насколько достоверны эти отличия? Находят разницу 6,549 — 6,115 = 0,434 и ее вероятную ошибку по следующей формуле:

РЕ=± PE12+PE22

которая гласит, что вероятная ошибка разницы средних равна корню квадратному из суммы квадратов ошибок сравниваемых средних. Если разница превышает свою ошибку в 4, 5 или больше раз, мы вправе говорить о статистической достоверности различия всех харьковских и московских пчел. В нашем примере это так и есть, ибо 0,434 в 108 раз больше, чем

РЕ = ± V0,0032+0,0032 = 0,004. В этой книге всюду вычислены вероятные ошибки.

Желающие познакомиться более подробно с приемами математико-статистического материала, должны обратиться к специальным учебникам и пособиям. До сих пор сохранило свое значение пособие Ю. А. Филипченко «Изменчивость и методы ее изучения», 4-е издание. Очень полезна книга Митропольского: «Техника статистического исчисления»; крайне полезна для биологов и агрономов краткая, но очень доступная книжка нашего виднейшего математика-статистика В. Романовского (1947).

Для лиц, которым придется производить много вычислений, я не могу не рекомендовать технику вычисления, разработанную мною в итоге многолетней работы по биометрии и очень сильно облегчающую счетную работу (Алпатов, 1935).

Очень большое ускорение работы дает также пользование логарифмической линейкой.

(например 1000 пчел) и по вышеизложенному начертить вариационную кривую, то она будет весьма плавно подниматься и перегибаться над М. Если отложить налево и направо от М по отсеку, равному сигме, то место перехода каждой ветви кривой из вогнутой в выпуклую будет как раз приходиться над наружными точками сигм (см. рис. 9).

Страницы: 1 2 

Смотрите также

Вывод маток и племенное улучшение пчел
На пасеке ежегодно требуются молодые матки для следующих целей: 1) образования новых семей, 2) смены старых маток, 3) запаса на случай утери или порчи матки в какой-либо семье. Кроме того, маток и ...

Селекционная работа на пасеке
Нельзя не упомянуть о влиянии на производительность пасеки селекционной работы. С одной стороны, путем селекции постоянно улучшают поголовье пчел, с другой — выводят межрасовых и межлинейных гибри ...

Сотообеспеченность пасеки
С сильными семьями пчеловоду легче и интереснее работать. Они собирают много меда и выделяют много воска, реже болеют. Поэтому нужно учиться выращивать сильные семьи. Для этого необходимы молодые ...